probably smaller

Number sequence
Started By
anto
, Sep 13 2006 02:22 PM
73 replies to this topic
#69
Posted 16 May 2007 - 09:39 AM
#70
Posted 16 May 2007 - 12:58 PM
I agree. I've given up on that approach.Using about the algorithm Pyro describes... Still, I don’t think this is what the target sequences inventor intends – it doesn’t quite seem to satisfy the “any 5th grader could do it” criterion....
#71
Posted 17 May 2007 - 10:20 PM
1 1 2 3 2 3 3 4 3 4 5 4 5 4 5 5 6 5 6 5 6 1 1 2 3 2 3 3 4 3 4 5 4 5 4 5 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 p=# of primes used in sum s, x=product of the primes p s | x ->1,2,4,8,15,30,50,100,98,375.. 1 0 1(not p.)| 1 1 2=2 | 2 =2 2 4=2+2 | 2*2 =4 3 6=2+2+2 | 2*2*2 =8 2 8=5+3 | 5*3 =15 3 10=5+3+2 | 5*3*2 =30 3 12=5+5+2 | 5*5*2 =50 4 14=5+5+2+2 | 5*5*2*2=100 3 16=11+3+2 | 11*3*2 =66 or 16=7+7+2 7*7*2 =98 <-? 4 18=11+3+2+2 | 11*3*2*2=132 or 7+7+2+2 7*7*2*2=196 or 7+5+3+3 7*5*3*3=315 or 5+5+5+3 5*5*5*3=375 <-?? 5 20=11+3+2+2+2 . . . ack.. ------------------------ 14 (4) 7 3 2 2 84 5 5 2 2 100<- 100>84>45 5 3 3 3 45 12 (3) 7 3 2 42 5 5 2 50<- 50>42
#72
Posted 18 May 2007 - 10:35 AM
I actually tied that method and a smiliar one using prime numbers, none worked
. So 66 is not the right anwer, I don't know about 98 though.

#73
Posted 18 May 2007 - 11:12 AM
I LIKE it!!!!!!!!!!!!!!!!!
Tha's what I'm talking about!!!!!!!!!!!
Tha's what I'm talking about!!!!!!!!!!!
#74
Posted 01 March 2015 - 11:24 AM
pattern of triangle numbers? ((n+1)n/2): 1 3 6 *** 28 * 45 ** 78 *** 136 153 171 190 *** 276 * 325 ** 406 *** 528 561 595 630 *** 780 * 861 ** 990 *** 1176 1225 1275 1326 *** 1540 * 1653 ** 1830 *** 2080 (###*** #*#**#***# ?) social media is based in binary: tri# 128 64 32 16 8 4 2 1 1 0 0 0 0 0 0 0 1 64 3 0 0 0 0 0 0 1 1 32 6 0 0 0 0 0 1 1 0 16 28 0 0 0 1 1 1 0 0 8 45 0 0 1 0 1 1 0 1 4 78 0 1 0 0 1 1 1 0 2 136 1 0 0 0 1 0 0 0 1 ------------------------------------------------------------ 1 2 4 8 15 30 50 100 maybe this is next: tri# 512 256 128 64 32 16 8 4 2 1 153 0 0 1 0 0 1 1 0 0 1 64 171 0 0 1 0 1 0 1 0 1 1 32 190 0 0 1 0 1 1 1 1 1 0 16 276 0 1 0 0 0 1 0 1 0 0 8 325 0 1 0 1 0 0 0 1 0 1 4 406 0 1 1 0 0 1 0 1 1 0 2 528 1 0 0 0 0 1 0 0 0 0 1 ------------------------------------------------------------------------ 1 14 114 4 48 91 112 30 50 100 (1<150) 1 2 4 8 15 30 50 100 1 14 114 4 48 91 112 30 50 100 1 126 14 3 54 80 119 15 30 50 100 1 126 14 18 96 100 55 36 112 30 50 100 ... 1,2,4,8,15,30,50,100, 1,14,114,4,48,91,112,30,100, 1,126,14,3,54,80,119,15,....
Edited by max4236, 09 February 2016 - 12:19 PM.