# Quant Not Quark

elementary particles fine-structure constant quantization

No replies to this topic

### #1 kwrk

kwrk

Curious

• Members
• 2 posts

Posted 06 January 2018 - 08:54 AM

Hi everybody,

I am working on a model that uses the solution to a 2nd order DE, Ψ(e,ε), as probability amplitude for the electromagnetic field, EΨ(e,ε), e=elementary charge, ε=electric constant. Applying this to a point charge gives:

- quantized values for particle energy as function of the fine-structure constant α, see table below for first 2 symmetry terms;

- a numerical approximation for the fine-structure constant 1/α ≈ 4π Γ(1/3)|Γ(-1/3)| ( Γ=Gamma function);

- magnetic moments, calculated from electromagnetic fields; agreement with experiment within factor of 2;

and on a speculative level

- a possibility to quantitatively express gravitational force entirely in electromagnetic terms;

- an indication of a common base for strong force, electromagnetism and mass/gravitation.

The model is quite incomplete, its elaboration primitive and sloppy and I know the standard model already explains everything, but I need only e + ε, the standard model needs an additional 20+ parameters to do so.

Any idea, comment or critique welcome,

Happy new year,

kwrk

.............W_lit/MeV.......Wn/We lit.......Wn/We calc.......calc/lit.......Πn/1,509

y00...(ν......0,3eV-calc.........-................... 6E-7..................-..............α^3)

.........e.......0,51...............Ref...................-........................-...............-

.........µ.......105,66...........206,8...............206,8.............1,000.........α^(-1)

.........η.......547,86.........1072,1.............1066,0.............0,994.........α^(-1)α^(-1/3)

.........p.......938,27.........1836,2.............1841,5.............1,003.........α^(-1)α^(-1/3)α^(-1/9)

.........n.......939,57.........1838,7.............1841,5.............1,002.........α^(-1)α^(-1/3)α^(-1/9)

.........Λ.......1115,68.......2183,3.............2209,6.............1,012.........α^(-1)α^(-1/3)α^(-1/9)α^(-1/27)

.........Σ.......1192,64.......2333,9.............2348,0.............1,006.........α^(-1)α^(-1/3)α^(-1/9)α^(-1/27)α^(-1/81)

.........Δ.......1232,00.......2411,0.............2420,4.............1,004.........α^(-3/2)

y10. .π.........139,57..........273,1...............298,2.............1,092.........1,44 α^(-1)

........ρ0........775,26........1517,2............1537,6.............1,013.........1,44 α^(-1)α^(-1/3)

........ω0........782,65.......1531,6.............1537,6.............1,004.........1,44 α^(-1)α^(-1/3)

........Σ0.......1383,70.......2707,8.............2656,3.............0,981........1,44 α^(-1)α^(-1/3)α^(-1/9)

........Ω-........1672,45.......3272,9.............3187,2.............0,974........1,44 α^(-1)α^(-1/3)α^(-1/9)α^(-1/27)

........tau......1776,82.......3477,................3491,3.............1,004........1,44 α^(-3/2)