Dubbelosix 139 Posted June 6, 2019 Report Share Posted June 6, 2019 What do you mean, may I ask, with the statement that ''has nothing to do with the event?'' The event of what exactly? Quote Link to post Share on other sites

pittsburghjoe 4 Posted June 6, 2019 Author Report Share Posted June 6, 2019 Quantum weirdness (when matter can only be described as waves). When QM does something weird, it's a quantum event. Quote Link to post Share on other sites

pittsburghjoe 4 Posted June 6, 2019 Author Report Share Posted June 6, 2019 Join me guys, it's very liberating to know what is going on with the double slit experiment. Quote Link to post Share on other sites

Dubbelosix 139 Posted June 6, 2019 Report Share Posted June 6, 2019 Quantum mechanics has proven without any doubt, that particles are both particle-like and wave-like - it's only macroscopic systems in which the wavelike nature becomes extremely small, so much so it's almost impossible to detect. In other words, the wavelength of a particle diminishes in a busy environment. Quote Link to post Share on other sites

pittsburghjoe 4 Posted June 6, 2019 Author Report Share Posted June 6, 2019 They aren't both at the same time. You really think matter goes through both slits of the double slit experiment and interferes with itself? Quote Link to post Share on other sites

exchemist 730 Posted June 6, 2019 Report Share Posted June 6, 2019 (edited) Spacetime as a dimension/fabricI'm not making anything up, just pointing out the obvious. In what world are probabilities good enough? Look at the uncertainty principle, you can't know both momentum and position at the same time because the object is missing a dimension.Probabilities are good enough in the QM world, evidently, and that is the real world if you are a chemist or a particle physicist. In QM the position and momentum operators do not commute. Or to put it another way, position and momentum distributions are Fourier transforms of one another. Nothing to do with anything "missing a dimension", so far as I can see. Edited June 6, 2019 by exchemist Quote Link to post Share on other sites

exchemist 730 Posted June 6, 2019 Report Share Posted June 6, 2019 They aren't both at the same time. You really think matter goes through both slits of the double slit experiment and interferes with itself?Yes. Why not? People seem to forget that the result of the double slit experiment is exactly what QM predicted it would be. So why do they act surprised? Quote Link to post Share on other sites

pittsburghjoe 4 Posted June 6, 2019 Author Report Share Posted June 6, 2019 Wake up dude, I just clued you in on reality. Quote Link to post Share on other sites

exchemist 730 Posted June 6, 2019 Report Share Posted June 6, 2019 Wake up dude, I just clued you in on reality.Ha ha ha. Quote Link to post Share on other sites

Dubbelosix 139 Posted June 6, 2019 Report Share Posted June 6, 2019 (edited) They aren't both at the same time. You really think matter goes through both slits of the double slit experiment and interferes with itself? Here is some interpretations: 1. The particle can be both a wave and a particle or 2. They are either particle and behaving like a wave sometimes Do not mistake that the first statement may be in contradiction with the second.... so why? On one hand, we have experimental evidence that the wave hits a detector and appears on the detector as a point - suggesting a particle nature. However, because of a single wave diffraction, it also acts like a wave.... do they both need to be in contradiction? The answer is no, and deBroglie hit on this, stating that a particle may be guided by its own wave. DeBroglie realized this would predict what is called an empty wave... so I took his idea further. First, what do we mean by an empty wave? Well.... consider for a moment that the particle is only a wave, then it has to travel through both slits - however, if it is a wave which guides the particle through the slits, then a particle can only travel through one slit, this predicts that there is such a thing as an empty wave - a wave moving through space without any energy or mass. I came to realize, this could only be possible if the particle was ''in phase'' with the empty wave which has to include some type of quantum entanglement (or what we call a correlation). So, with that idea in mind, I decided to take the standard quantum entangle equations and applied it to the notion of an occupied space and a non-occupied state. EMPTY WAVE CORRELATION WITH OCCUPIED WAVE There's loads of different approaches I could take to describe how the particle becomes entangled with the empty wave, but sometimes a logical argument alone can suffice. Below, I use some notation some people may not be so acquainted with so I give it some explanation. It does involve the concepts of entanglement. [math]H(\Psi) = H(\psi_{empty}|\psi_{occup}) + H(\psi_{empty} : \psi_{occup})[/math] Here, [math]H(\psi_{empty}|\psi_{occup})[/math] is the entropy in [math]\psi_{empty}[/math] (after) having measured the system that became correlated in the occupied wave function [math]\psi_{occup}[/math]. Further, the notation [math]H (\psi_{empty} : \psi_{occup})[/math] is the information gained about [math]\psi_{empty}[/math] by measuring the occupied state [math]\psi_{occup}[/math]. This reveals a conservation in the second law not so dissimilar to the Shannon entropy in terms of information theory. Likewise from information theory, we can talk about the empty wave and occupied wave in terms of the upper bound of correlation which is given as: [math]H(\Psi) = H(\rho_{\psi_{empty}}) + H(\rho_{\psi_{occup}}) - H(\rho_{\psi_{empty,\ occup}})[/math] Which is a [quantum discord] attempt to unify an empty wave with an occupied wave. Let's talk a bit about correlation in terms of the quantum discord. Quantum Correlations When the systems are correlated we mean there exists a quantum entanglement - an entangled state is a linear superposition of separable states; the quantum divergence is [math]S(A:B ) \leq 2\min[s(A),S(B )][/math] Unlike the classical conditional entropy, [math]S(a|b ) = S(a,b ) - S(b )[/math] which remains positive always, while the quantum mechanical equivalent form [math]S(\rho_A|\rho_B ) = S(\rho_{AB }) - S(\rho_B )[/math] is not. The state is entangled if [math]S(\rho_A|\rho_B ) < 0[/math] where [math]S(\rho_A \otimes \rho_B ) = S(\rho_A) + S(\rho_B )[/math] Note also that [math]S(\rho_A \otimes \rho_B|\rho_{AB}) = S(\rho_A) + S(\rho_B ) - S(\rho_{AB}) \geq \frac{1}{2}| \rho_A \otimes \rho_B - \rho_{AB}|^2[/math] [math]\geq \frac{(Tr(\mathcal{O}_A \mathcal{O}_B )( \rho_A \otimes \rho_B - \rho_{AB} ))^2}{2|\mathcal{O}_A|^2|\mathcal{O}_B|^2}[/math] [math]= \frac{( <\mathcal{O}_A><\mathcal{O}_B> - <\mathcal{O}_A\mathcal{O}_B>)^2}{2|\mathcal{O}_A|^2|\mathcal{O}_B|^2}[/math] Which is known as the upper bound of correlation. In which the mutual information is [math]I(A:B ) = I(\rho_A) + I(\rho_B ) - I(\rho_{AB})[/math] Quantum discord - Wikipedia Edited June 8, 2019 by Dubbelosix Quote Link to post Share on other sites

pittsburghjoe 4 Posted June 6, 2019 Author Report Share Posted June 6, 2019 I know the math works for all the interpretations. Aren't you more interested in what is really happening? A blank wave ..okay, now your reaching. I'm cool with saying matter goes though both slits as long as you admit it doesn't have spacetime when it's doing it. Quote Link to post Share on other sites

Dubbelosix 139 Posted June 7, 2019 Report Share Posted June 7, 2019 I know the math works for all the interpretations. Aren't you more interested in what is really happening? I find this a really strange question, of course I am interested in what is going on, why do you think I have been taking the time to talk about interpretations? Why do you think I entertain various theories? Please don't get back-chatty with ''I know the math works,'' because I seriously doubt it - even if you did, your following statements are totally bizarre to me. Quote Link to post Share on other sites

Dubbelosix 139 Posted June 7, 2019 Report Share Posted June 7, 2019 And why is it bizarre to me? Because space, time and matter are codependent - you cannot have one without the other in relativity from first principles of general relativity and quantum mechanics. This once again brings us back to the fluctuations of spacetime, they are not separate in any way. Quote Link to post Share on other sites

pittsburghjoe 4 Posted June 7, 2019 Author Report Share Posted June 7, 2019 There isn't a reason to entertain other interpretations if you were to believe what I've said. I stumbled on this obvious thing about QM/Spacetime and it's been squeezing water from a rock to get anyone see what I'm pointing at. Everyone has been programmed to not ask what the unobservable is and to just do the math. You can have QM without spacetime just fine, but spacetime needs QM as a base. Quote Link to post Share on other sites

Dubbelosix 139 Posted June 7, 2019 Report Share Posted June 7, 2019 (edited) There isn't a reason to entertain other interpretations if you were to believe what I've said. That's the problem though, I don't believe what you have said because I know better... tell me... when will your next account be created to try and deceive me?? I know who you are, I am just curious as to why you think I am so stupid I don't know these things about your monikers. I think from now on, I won't acquiesce or entertain this any more. You are really testing my patience, do you want me to name all your monikers here at the site? Continuing to create new accounts, trying to word things differently, is one the most disingenuous things I have ever seen. I too made accounts on other sites, but that was to by-pass the one account, you have a whole list of accounts... also, stop bothering me in my private messages. Edited June 7, 2019 by Dubbelosix Quote Link to post Share on other sites

pittsburghjoe 4 Posted June 7, 2019 Author Report Share Posted June 7, 2019 umm, wut? If someone has had this idea before me I need to know about it. Quote Link to post Share on other sites

pittsburghjoe 4 Posted June 7, 2019 Author Report Share Posted June 7, 2019 I've talked about this on other forums, I usually use pittsburghjoe as my username. I very rarely ever private message anyone. Quote Link to post Share on other sites

## Recommended Posts

## Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.