I have decided to continue my Quaternionic Equation from the original Wormhole Metric Thread = https://www.sciencef...his-screwed-up/

This is mainly to check all the variables in the differential Equation to make sure that they all solve correctly and to make sure the Quaternion is anomaly free and solve the equation for **(x,y,z,t,ω _{s},ω_{p},M,I,k,φ,S,X,Z,μ,Y,q,a,β)**

**∇'(x,y,z,t,ω _{s},ω_{p},M,I,k,φ,S,X,Z,μ,Y,q,a,β) = (d^{2}/((ħ^{2 } /(2E_{rest}/C^{2})) ∑^{3}_{a =1} (d^{2}/d((C^{2}/E_{rest})∑^{N}_{i = 1 }M_{i}R_{i})^{2}) + (1/2)∑^{3}_{a,β = 1 }μ_{aβ}(P_{a }- Π_{a})(P_{β} - Π_{β}) + U - (ħ^{2}/2)∑^{3N-6}_{s=1}(d^{2}/dq^{2}) + V)((|(Log_{(DgDaDψDφ-W)}(((2ħGC^{2}))R_{s} - (1/4)F^{a}_{μ}_{v}F^{a}^{μv} + i(ψ-bar)γ^{μ}(((L_{ghost QE } - gf_{abc}(δ^{μ }(c-bar)^{a})A_{μ}^{b}c^{c}) / (c-bar)^{a}δ^{μ}c^{a}) + ig(1/2)τW_{μ} + ig'(1/2)YB_{μ})ψ^{i} +(ψ-bar)^{i}_{L}V_{ij}φψ^{j}_{r} + (a_{ji}) - (μ^{2}((φ-Dagger)φ) + λ((φ-Dagger)φ)^{2})/-(((L_{ghost QE } - gf^{abc}(δ^{μ }(c-bar)^{a})A_{μ}^{b}c^{c}) / (c-bar)^{a}δ^{μ}c^{a}) + ig(1/2)τW_{μ} + ig'(1/2)YB_{μ})^{2})|)-e^{2S(r,t)/h})) - ((E_{rest}/C^{2})ω_{s}((((8πGT_{ab}/C^{4}) + Λg_{ab } - R_{ab}) * g_{ab}^{-1}))^{1/2} + (S/ (((3G(E_{rest}/C^{2}))/2C^{2}R_{s}^{3})(R_{p}V_{p}) + (GI_{s}/C^{2}R_{s}^{3})((3R_{p}/R_{s}^{2})(ω_{p }R_{p}) -ω_{p} ))))R_{s}^{2}/2))) / (ħ^{2}/2(E_{rest}/C^{2}))))^{1/2}(((1-(((2(E_{rest}/C^{2})G / R_{s}) - (I_{s}ω_{s}((((8πGT_{ab}/C^{4}) + Λg_{ab} - R_{ab}) * g_{ab}^{-1}))^{1/2} + (S/(((3G(E_{rest}/C^{2}))/2C^{2}R_{s}^{3})(R_{p}V_{p}) + (GI_{s}/C^{2}R_{s}^{3})((3R_{p}/R_{s}^{2})(ω_{p }R_{p}) -ω_{p} )))))/2(E_{rest}/C^{2}))+ (((8πG/3)((g/(2π)^{3})∫(((E_{relativistic}^{2} - E_{rest}^{2} / C^{2}) + ((A_{r}(X) + (E_{Nucleon binding SNF} ε_{0 }μ_{0 }/m_{u}) - A_{r}(X^{Z±})/Z) / m_{u})^{2})^{(1/2)}(1/e^{((ERelativistic - μchemical)/TMatter)}±1)(ħω_{s } + ħω_{s}) - ((k_{s}C^{2})/ R_{s}^{2}) + (((8πGT_{ab}/C^{4}) + Λg_{ab } - R_{ab}) * g_{ab}^{-1}))^{1/2}(Δx_{Kiloparsec})))^{2}/(C^{2})))^{1/2})**

**(d ^{2}/∇') - (Ct_{p})^{2 } = ds^{2}**

^{https://www.wolframalpha.com/input/?i=(d%5E2+%2F+%E2%88%87%27)+-+(C+t)%5E2}

**(Universe Volumetric Planck State @ size of universe in radius) =(4/3)π((R _{Universe}/(t_{p}C)**

**)**

^{3 }L_{universe}https://www.wolframa... ((R/(t C)) )^3

https://www.wolframa... π ((R/(t C))^3

**L _{universe} = (∇_{Charge},∇_{Color},∇_{flavour},∇_{gravity} - ∇_{Dark Energy})**

**https://www.wolframalpha.com/input/?i=%E2%88%87+d**

https://www.wolframa...i=(∇ g) - (∇ d)

**Charge possible states per point (1,2/3, 1/3, 0,-1/3,-2/3,-1)**

**Color Possible states per point(R,B,G,0,antiG,antiB,antiR)**

**Flavour possible states per point (I,II,III,0,darkIII,darkII,darkI)**

**Gravity/Dark Energy possible states per point of space (Energy,Mass,Spin,0,****-spin****,-mass,****-Energy****)**

Atleast the graphing equation and Equivalence principal are in working order having A.I. do the work.

**Edited by VictorMedvil, 14 April 2019 - 03:02 AM.**